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ABSTRACT

Background: Asian tiger mosquito Aedes albopictus is an arbovirus vector that has
spread from its native habitation areal in Southeast Asia throughout North and South
Americas, Europe, and Africa. Ae. albopictus was first detected in the Southern
Federal District of the Russian Federation in the subtropical town of Sochi in 2011.
In subsequent years, this species has been described in the continental areas with
more severe climate and lower winter temperatures.

Methods: Genomic analysis of pooled Ae. albopictus samples collected in the
mosquito populations in the coastal and continental regions of the Krasnodar Krai
was conducted to look for the genetic changes associated with the spread and
potential cold adaptation in Ae. albopictus.

Results: The results of the phylogenetic analysis based on mitochondrial genomes
corresponded well with the hypothesis that Ae. albopictus haplotype Ala2al was
introduced into the region from a single source. Population analysis revealed the role
of dispersal and genetic drift in the local adaptation of the Asian tiger mosquito.
The absence of shared haplotypes between the samples and high fixation indices
suggest that gene flow between samples was heavily restricted. Mitochondrial and
genomic differentiation together with different distances between dispersal routes,
natural and anthropogenic barriers and local effective population size reduction
could lead to difficulties in local climatic adaptations due to reduced selection
effectiveness. We have found genomic regions with selective sweep patterns which
can be considered as having been affected by recent selection events. The genes
located in these regions participate in neural protection, lipid conservation, and
cuticle formation during diapause. These processes were shown to be important for
cold adaptation in the previous transcriptomic and proteomic studies. However, the
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population history and relatively low coverage obtained in the present article could
have negatively affect sweep detection.

Subjects Entomology, Evolutionary Studies, Genomics, Molecular Biology, Zoology
Keywords Pathogen vector, Population genomics, Cold adaptation, Invasive species, Asian tiger
mosquito

INTRODUCTION

The Asian tiger mosquito Aedes albopictus is a vector of several viruses causing such
diseases as yellow fever, dengue fever, and Chikungunya fever (Akiner et al., 2016). It is
assumed that this mosquito can also transmit the Zika virus (Gardner, Chen ¢ Sarkar,
2016). This invasive species has spread from its native habitat in Southeast Asia throughout
Africa, North and South Americas, across the Mediterranean Sea to southern Europe,
where it was described since the end of the 20th century. Car tires and artificial water
reservoirs were presumably the main routes of mosquitoes spread to new territories (Gratz,
2004). Climate modeling has suggested that the Asian tiger mosquito may inhabit North
Caucasus, the Black and Azov Sea coast, and Kuban River valley (Benedict et al., 2007).
Regarding the introduction of viruses, the Black sea coast area between Adler and
Novorossiisk is under the potential threat. Approximately 200 cases of dengue fever are
reported annually in Russia, but no local virus transmission has been recorded so far. It has
been pointed out that the risk of arbovirus infection spreading over the South of Russia
should not be underestimated (Ganushkina et al., 2012; Sergiev, 2014; Yasjukevich et al.,
2017; Yasjukevich et al., 2013; Zabashta, 2016). Therefore, the Federal Service for
Surveillance on Consumer Rights Protection and Human Wellbeing Agency is constantly
monitoring the number of introduced mosquitoes and the presence of transmissible
pathogens. Currently, both most important arboviral vectors, Ae. aegypti and Ae.
albopictus, occur in the Black Sea region, namely, in Turkey, Georgia, Bulgaria, and in the
South of Russia (Akiner et al., 2016; Kotsakiozi et al., 2018). In contrast to Ae. albopictus,
Ae. aegypti was so far found only in the coastal areas (Yasjukevich et al., 2017, Ganushkina
et al., 2016), which may possibly be explained by this species inability to survive the winter
in the inland areas (Reinhold, Lazzari & Lahondeére, 2018; Kramer et al., 2020; Yasjukevich
et al, 2017).

In a previous phylogenetic analysis of Ae. albopictus mosquitoes from the Black Sea
region, no significant difference between local populations was found based on COI and
ITS2 data, probably because only samples from the subtropical areas in the vicinity of
Sochi were used (Shaikevich et al., 2018). Whole-genome analyses showed that differences
between local populations, found within a limited area (city outskirts), can be as high as
between samples collected in the coastal and continental areas. A similar situation was
previously reported in Italy and Africa using RADseq (Kotsakiozi et al., 2017), where the
scenario of in situ divergence after a single or multiple introductions from the same region
was posited. In contrast, Ae. albopictus mosquito populations in Greece and Albania
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showed low level of divergence, which could probably be due to their slower expansion in
these countries (Pichler et al., 2019).

The Ae. albopictus was first found in the Black Sea coastal area in 2011 in Sochi
(Ganushkina et al., 2012). The previous mosquito monitoring carried out in 2007 did not
show the presence of any Ae. albopictus, thus the introduction could have taken place
between the years 2007 and 2011 (Ganushkina et al., 2016). In 2012, Ae. albopictus was
found along the Black Sea coast (from the Adler to Dzhubga districts) (Ganushkina et al,
2016) and 44 km inshore (Krasnaya Polyana) (Ganushkina et al., 2013). Over several years,
the Asian tiger mosquito has spread along the western coast of the Black Sea to Gelendzhik,
Novorossiysk, and Anapa, and migrated inland as far as Maikop, Apsheronsk, and
Khadyzhensk (Zabashta, 2016; Fedorova et al., 2018; Fedorova et al., 2019b). In 2018, Ae.
albopictus populations were found in Krasnodar, on the northern slopes of the Caucasus,
in the Adygeya Republic, and the Zakubanskaya plain (Fedorova et al., 2019b). Over a
few years, the area occupied by Ae. albopictus has extended to 260 km along the Black Sea
coast and has advanced more than 140 km inland (Fedorova et al., 2019a). As reported,
Ae. albopictus actively spreads in the northwest direction and was found in the villages
Yurovka, Slavyansk-on-Kuban, Timashevsk, Korenovsk, and Vostochnoye in the
Krasnodar Krai (Sycheva et al., 2020).

The Black Sea coast of the North Caucasus is the only Russian territory, where tiger
mosquito presence has been documented; however, the processes of Ae. albopictus
adaptation to the new habitation area with a more continental climate has not yet been
investigated. Cold tolerance of Ae. albopictus attracted attention in the middle of the 20th
century, when this mosquito species started its expansion into the temperate latitudes
of North America and Asia. It is considered to be colder-more resistant than another
globally prevalent mosquito vector of virus fevers, Ae. aegypti. The low threshold
temperature for Ae. aegypti eggs development is 9 °C (Tsuda ¢ Takagi, 2001), while the
eggs of Ae. albopictus can resist —10 °C (Thomas et al., 2001). The recent meta-analysis,
however, has challenged the differences in low temperature survival between these two
species by demonstrating that Ae. aegypti eggs could survive sub-zero temperatures for a
short period of time (Kramer et al., 2020).

Furthermore, it has been previously observed that Ae. albopictus from colder regions
with marked seasonality (e.g., United States) differed in their ability to tolerate negative
temperatures from the mosquitoes collected in warmer regions (e.g., Malaysia, tropical
Africa) (Hanson ¢ Craig, 1994). Noteworthy, for Ae. aegypti mosquitoes, collected in the
same habitats (northern Indiana, USA), no such low temperature resistance was
documented (Kotsakiozi et al., 2017). At the same time, a recent population genomics
study demonstrated a rather high degree of genetic differentiation between these mosquito
populations, which suggests that there are some genetic differences between Ae. albopictus
mosquitoes from different parts of the world, which underlie the differences in cold
tolerance (Kotsakiozi et al., 2017). Even though the complete genome sequence is available
for this species, no whole-genome analysis for specific genes or loci differing in the allele
frequency spectrum as a result of natural selection for cold tolerance has been reported
so far.
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European populations of Ae. albopictus also demonstrated the ability to survive humid
continental winters and were more tolerable to overwintering in the same conditions
than mosquitoes from tropical zones (Thomas et al., 2012; Tippelt, Werner ¢ Kampen,
2020). Eight years after the introduction, mosquitoes from these populations have
extended their period of activity into the coldest months of the year (Romi, 2001). There
are many other factors, which affect the spread of Aedes mosquitoes over the areas with
temperate climate, including daylight length, precipitation, and atmospheric pressure
(Garzon et al., 2021; Benitez et al., 2021).

There are many ways to survive low temperatures in insects. Among them are metabolic
mechanisms, including polyol and ATP synthesis in mitochondria, involvement of heat
shock proteins and antioxidants, and specific regulation in response to stress (Storey ¢
Storey, 2012). Genes involved in these processes were found to be under selection in the
natural populations (Mallard et al., 2018, Bozicevi¢ et al., 2016). Some of these mechanisms
have already been studied in Ae. albopictus (KrefS et al., 2016; Poelchau et al., 2013), or
other mosquito species (Kayukawa & Ishikawa, 2009; Kim et al., 2006; Kostal ¢» Simek,
1998; Rinehart, Robich ¢ Denlinger, 2006). Whole-genome sequencing and subsequent
population analysis are promising tools for identifying new mechanisms for climate
adaptation in insects, but so far these approaches have been used to study cold adaptation
mostly in the model species (Storey ¢ Storey, 2012; Xia et al., 2004). In some cases,
nucleotide variants found to be under selection for cold tolerance were localized in
non-coding regions, such as introns and cis-regulatory elements (Pool, Braun ¢ Lack,
2017; Wilches, 2014), thus making it challenging to draw conclusions on their role in cold
adaptation given our understanding of cold adaptation physiology. For Aedes spp.,
local adaptation to specific the environment (Bennett, McMillan & Loaiza, 2021), cold
(Sherpa, Blum ¢ Després, 2019), and overwintering (Medley, Westby ¢ Jenkins, 2019) was
also described.

In the present work, we describe the structure of and genomic changes in Ae. albopictus
populations in the Krasnodar krai and identified the signatures of potential local
adaptations.

MATERIALS & METHODS

Sample collection

Mosquito samples were collected between September 17 and 19, 2019 at six locations
(Fig. 1) in the Krasnodar Krai (Russian Federation). Three samples (30 mosquitoes in
1_Sochi, 17 in 2_Sochi, and 30 in 3_Sochi) were collected in Sochi, where the climate is
humid subtropical without a marked winter. Three samples (42 mosquitoes in
4_Krasnodar, 25 in 5_Krasnodar, and 40 in 6_Krasnodar) were collected in Krasnodar
with a more continental climate and below zero winter temperatures. Locations within a
city were separated by at least 10 km, while the distance between the two cities is over
100 km. Collection sites were located in city cemeteries (excluding 3_Sochi, which was
located at a rabbit farm at the forest edge). Visitors to the cemetery bring many memorial
vases, which serve as reservoirs, where immature stages of Ae. albopictus develop.
Sampling was performed from 6 to 7 pm, when female mosquitoes attack most actively.
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Figure 1 Location of collection sites. Location of collection sites designated with diamonds and
numbers that correspond to figures and tables below. Generated with SimpleMappr (Shorthouse, 2010).
Sample size is given in brackets. Full-size K&l DOT: 10.7717/peerj.11776/fig-1

Adult female mosquitoes were captured using a mosquito aspirator when they landed and
attempted to feed on collectors. After capturing, mosquitoes were identified using the
Gutsevich, Monchadsky ¢ Stackelberg (1970) Field Guide. Insects were stored in cold 96%
ethanol.

DNA extraction and high-throughput sequencing

Mosquitoes from each collection site were pooled in a 1.5 ml tube containing 180 pl of PBS.
Homogenization was performed using TissueLyser IT (QIAGEN, Hilden, Germany) at 30
shakes/s for 4 min. DNA was extracted from homogenized samples using the DNeasy
Blood & Tissue Kit (QIAGEN, Hilden, Germany) in accordance with the manufacturer’s
protocol. Short (150 bp) paired-end whole-genome (WGS) reads were obtained by
Macrogen Inc. (Seoul, South Korea) using Illumina NovaSeq 6000. Average coverages were
58.4x for Sochi (1.9x per individual), 64.4x for 2_Sochi (3.8x per individual), 57.2x for
3_Sochi (1.5% per individual), 61.4x for 4_Krasnodar (1.5 per individual), 64.3x for
5_Krasnodar (2.6x per individual), and 58.4x for 6_Krasnodar (1.6x per individual).
The mean GC-content was 40.28%. Read quality was checked using the FastQC software
(Andrews, 2010); adaptors and low quality (phred < 20) reads were trimmed using
Trimmomatic v. 0.38 (Bolger, Lohse ¢ Usadel, 2014). Raw sequence reads for pool-seq
samples are accessible by Sequence Read Archive accession numbers SRR13570421 to
SRR13570426.
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Read mapping, population genomics, and sweep detection

Reads were aligned in pairs to the Ae. albopictus reference genome (Refseq assembly
AalbF2 accession GCF_001876365.2) using bbmap (Bushnell, 2014). Popoolation (Kofler
et al., 2011) software was used to estimate population genetics parameters, such as 7, 0, and
Tajima’s D, in pooled samples using a 1 kb sliding window, and Popoolation2 (Kofler,
Pandey & Schlotterer, 2011) to estimate Fst and conduct Fisher’s exact test to compare
differences in the allele frequency spectrum (AFS) between samples (1 kb sliding window,
step-size = 1). Genomic regions for which significant (FDR < 0.05, Bonferroni correction)
differences in AFS were found between the populations from different cities and not found
within Sochi or within Krasnodar were selected.

Single nucleotide polymorphism and indel calling was performed using GATK
HaplotypeCaller (McKenna et al., 2010). The variance-covariance matrix (Q2) for cluster
analysis using the Bayesian hierarchical model was build using the neutral core model
(Coop et al., 2010) in the BAYPASS software (Gautier, 2015). Effective population size was
estimated using the poolne_estimate script (Gautier et al., 2013).

Selective sweep detection analysis was performed using SweeD (Pavlidis et al., 2013),
grid = 1,000, for each pooled sample. For scaffolds over 50 Mbp grid = 10000 was used.
Scaffolds shorter than 100 kb were excluded from the analysis. Genomic regions affected
by sweep were selected based on the Composite likelihood ratio (CLR) greater than a
0.5% quantile in each sample. Gene was considered to be affected by sweep if it was located
in a sweep region or if a sweep was located in a putative promotor and transcription
binding site region (1 kb upstream). BLAST2GO (Conesa et al., 2005) was used for the
functional annotation of genes located in sweeps.

Phylogenetic analysis

Filtered reads were mapped on the reference mitochondrial genome (NC_006817)
separately for each sample using bbmap (Bushnell, 2014). These mapped reads were used
to reconstruct haplotype sequences and frequencies in each sample using RegressHaplo
pipeline (Leviyang et al., 2017) (max_num_haplotypes = sample size, sig = 0.01,
num_trials = 1,000). Mitochondrial genome haplotype sequences of Sochi and Krasnodar
samples were aligned using MAFFT (L-INS-i method, Katoh et al., 2005) with other
available in GenBank Ae. albopictus mitochondrial genomes (Z¢-Zé et al., 2020; Battaglia
et al., 2016; Zhang et al., 2016). We used PartitionFinder (Lanfear et al., 2012) to identify a
partitioned model of sequence evolution for mitochondrial genome alignment and Mr.
Bayes (Ronquist et al., 2012) for Bayesian phylogenetic inference (MCMC

ngen = 5,000,000). We checked the convergence of the runs by the program Tracer 1.7
(Rambaut et al., 2018).

RESULTS

Sequencing and read mapping

Whole genome sequencing produced 142.9-161.2 Gb of raw read sequence data, 97% of
which were retained after quality trimming. About 71-77% of reads were successfully
mapped on the Ae. albopictus genome. It resulted in 57.2-64.4x coverage per a pooled
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Table 1 Fixation indices (Fy;) between studied samples.

1_Sochi 2_Sochi 3_Sochi 4 Krasnodar 5 Krasnodar
2_Sochi 0.251
3_Sochi 0.313 0.23
4 Krasnodar 0.205 0.195 0.244
5_Krasnodar 0.136 0.323 0.386 0.272
6_Krasnodar 0.136 0.325 0.385 0.272 0.026

sample and 1.5-3.8x coverage per an individual mosquito within a pool. For mitogenome,
the coverage was 417-479x per sample.

Differentiation between populations

Firstly, the suitability and representativity of the obtained sequence data were checked by
comparing the sample size and the effective population size. Local populations 1_Sochi
and 4_Krasnodar had a three-fold lower effective population size than its actual sample
size (9.7 + 1.7 against 30 individuals and 19.3 + 3.5 against 42 individuals, respectively),
probably due to the isolation that led to inbreeding. Population 3_Sochi showed a less
drastic deviation between the effective population and sample sizes (20.3 + 7.5 vs. 30).
Other local populations had effective population size close to the actual sample size,
according to the whole-genome allele frequency estimation using poolna_estimate.

Analysis of differentiation between the populations revealed 44.25 million polymorphic
sites across the Ae. albopictus genome. More than half of them (22.59 million sites) were
significantly (FDR < 0.05, Bonferroni correction) different between at least one pair of
studied populations. Analysis of fixation indices (Fst) between samples revealed high level
of population differentiation (Table 1). Differentiation between the three samples from
Sochi was higher than between 1_Sochi and all Krasnodar samples, as well as between
2_Sochi and 4_Krasnodar or 3_Sochi and 4_Krasnodar. Based on the mean Fst values
across the genome, only 5_Krasnodar and 6_Krasnodar appeared to be weakly
differentiated; the observed differentiation between all other pairs of samples pointed to
the high numbers of specific alleles in each population.

Cluster analysis also confirmed strong differentiation between the local populations
except for 5_Krasnodar and 6_Krasnodar (Fig. 2). Despite Krasnodar local populations
were separated by a similar geographical distance from each other, 4_Krasnodar
mosquitoes were genetically as distant from other Krasnodar populations as from 2_Sochi
mosquitoes.

Genomic regions with distinct allele spectrum

To identify genes associated with cold adaptation, we selected genomic regions, which
showed significant differentiation between samples from Sochi and Krasnodar, but not
between the samples collected within each of the two cities. These loci were filtered from
outliers by the Fst value according to the Rosner’s test. As a result, we obtained 46
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Figure 2 Clustering analysis of Krasnodar Krai Ae. albopictus mosquitoes under Bayesian
hierarchical model. Numbers correspond to collection sites (Fig. 1).
Full-size & DOL: 10.7717/peer].11776/fig-2

Ae. albopictus genomic regions (Table S1) with allele frequencies differing between the
Sochi and Krasnodar, but not within the Sochi or Krasnodar populations.

Selective sweeps

Composite likelihood ratio distribution across the scaffolds with candidate selective sweeps
for each local population are presented in Fig. 3. About 30-40% of these regions did not
contain genes within the 10 kb range. Genes found in the selective sweep regions are
presented in the Table 2.

Three of these genes were involved in fatty acid metabolism (LOC109422645,
LOC115263932, LOC115260991, GO:0006633 fatty acid biosynthetic process). Many loci
located in selective sweeps were also involved in development, in particular, in
neurogenesis and eye development: homeobox protein HMX3, NXF1, DCX, neuronal PAS
domain-containing protein 3, PAX-6, and rdgC (GO:0007399 nervous system
development). Some of them participated both in the developmental pathways and
pathogen response, such as Kriippel-like factors and runt-related transcription factors.

Phylogenetic analysis and haplotype distribution

Phylogenetic analysis based on the whole mitochondrial genomes showed that despite
significant differences in the allele frequency spectrum Ae. albopictus populations from the
Krasnodar Krai are closely related and share a common origin (Fig. 4). Tiger mosquitoes
from Russia formed a separate clade with the posterior probability of 1. Mosquitoes in
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this clade appeared to be related to mosquitoes from Italy, Portugal, and Greece, their

mitochondrial haplotypes belonging to the haplogroup Ala2. We didn’t find any shared
mitochondrial haplotype between any pair of analyzed samples. 3_Sochi and 4_Krasnodar
populations revealed a single unique mitochondrial haplotype each, while other samples
revealed one major (present in 73-80% of the individuals according to PredictHaplo)

and two to four less common haplotypes (Table 3). The COI region in all samples of the
Sochi and Krasnodar mosquitoes was identical to the one previously found in this region

(MG198595, Shaikevich et al., 2018).
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Table 2 List of genes located in selected sweep regions.

Tajima’s D pi
Sochi_1
LOC115265510 IncRNA 0.74 0.0027
LOC109422645 short-chain specific acyl-CoA dehydrogenase 0.84 0.0027
LOC109427049 frizzled 0.49 0.0022
LOC109422897 disintegrin and metalloproteinase domain-containing protein 12 1,31 0.0026
LOC109427779 hemicentin-2-like 0,23 0.002
LOC109424968 ras GTPase-activating protein-binding protein 1 1.05 0.0041
LOC109431083 chitin deacetylase 1 1.15 0.0021
LOC109431116 adenosylhomocysteinase-like 1 -0.13 0.0022
LOC109424976 titin 0.11 0.0028
Sochi_2
LOC109425273 runt-related transcription factor 2-like 0.22 0.0021
LOC109421849 segmentation protein Runt-like -0.09 0.0017
LOC109412943 tyrosine-protein phosphatase non-receptor type 23-like 0.07 0.0018
LOC109417087 sodium/potassium/calcium exchanger 3-like 0.08 0.0012
LOC109418656 Krueppel-like factor 5 0.85 0.0027
Sochi_3
LOC109427647 IncRNA 1.03 0.0047
Krasnodar_4
LOC115260991 fatty acid synthase-like 0.24 0.0034
LOC109432289 single-stranded DNA-binding protein 3 1.17 0.004
LOC115267667 larval/pupal cuticle protein H1C-like - 0.57 0.0034
LOC109408817 potassium channel subfamily T member 1 1.05 0.0044
LOC109409075 calcyphosin-like protein 0.52 0.0032
LOC109622526 facilitated trehalose transporter Tretl-like 0.28 0.0024
LOC109622532 PDZ domain-containing protein GIPC3-like 0.37 0.0025
LOC109409257 syntaxin-1A 0.39 0.0033
Krasnodar_5
LOC109397006 paired box protein Pax-6-like 0.22 0.0035
LOC115262968 homeobox protein HMX3-like 0.15 0.0017
LOC115262971 serine/threonine-protein phosphatase rdgC-like 0.53 0.0035
LOC115262973 serine/threonine-protein phosphatase rdgC-like 0.36 0.005
LOC115263932 elongation of very long chain fatty acids protein AAEL008004-like 0.94 0.0049
LOC109426122 serine/threonine-protein phosphatase PP1-beta catalytic subunit 0.74 0.0048
LOC115263945 putative ATP-dependent RNA helicase DHX57 1.35 0.0071
LOC109426144 nuclear RNA export factor 1 0.45 0.0032
LOC115263947 open rectifier potassium channel protein 1-like 0.67 0.0045
Krasnodar_6
LOC109421031 protein transport protein Sec61 subunit alpha-like 0.85 0,0067
LOC115262466 deoxynucleotidyltransferase terminal-interacting protein 2-like 0.73 0,004
LOC109427703 serine/threonine-protein kinase GL21140 0.69 0,0043
Konorov et al. (2021), PeerdJ, DOI 10.7717/peerj. 11776 10/23


http://dx.doi.org/10.7717/peerj.11776
https://peerj.com/

Peer/

Table 2 (continued)

Tajima’s D pi
LOC109427739 peroxidase 0.39 0.0045
LOC115262467 uncharacterized connector enhancer of ksr -0.12 0.0038
LOC115262469 ras-related and estrogen-regulated growth inhibitor-like protein 0.46 0.005
LOC109427854 dnaJ homolog subfamily C member 7 0.29 0.0054
LOC115262471 small nucleolar RNA U3 0.00 0.001
LOC109428139 acidic amino acid decarboxylase GADL1-like 0.16 0.0036
LOC115263426 neuronal PAS domain-containing protein 3-like 0.58 0.0059

The haplotypes identified in the 1_Sochi, 2_Sochi and 5_Krasnodar samples formed a
distinct clade. In contrast, the rare 6_Krasnodar haplotypes (Krasnodar_6_H4 and
Krasnodar_6_H3) showed more basal localization on the phylogenetic tree relative to all
other Sochi and Krasnodar haplotypes (Fig. 4).

DISCUSSION

Experimental design limitations and coverage effects

We have selected Ae. albopictus populations from Sochi and Krasnodar because of distinct
differences in winter temperatures between these two regions. However, it should be
noted that Ae. albopictus can also be found in other areas of the Krasnodar Krai, where
climatic conditions are different from those in both chosen locations. In Novorossiysk
and Tuapse, located in the northern part of the Black sea coast, the average daily
temperature does not differ dramatically from that in Sochi, but average precipitation is
lower and annual average wind speed is higher (gismeteo.ru). It may cause differences in
selective pressure and patterns of local adaptation. It is also expected that there is a
gene flow between these places, which can limit the efficiency of selection. There is no data
confirming that Sochi was the immediate source of mosquito expansion to Krasnodar, thus
selective pressure imposed by some other factors apart from low winter temperatures
could have shaped the variation patterns.

To accurately detect selection sweeps it is necessary to reduce the demographic
history effects, since the bottlenecks and founder effects are hardly distinguishable from
selective sweeps when working with small samples (Jensen et al., 2007). Thus, the 2_Sochi
(n =17) and 5_Krasnodar (n = 25) samples may be considered too small to efficiently
detect sweeps with relatively small selection coefficients. To reduce demographical
effects, we had planned to find selection sweeps in the same genomic regions in all three
Sochi populations compared to all three Krasnodar populations to be sure that selection
search results are reliable. We found no genomic regions of this kind in the Sochi and
Krasnodar populations, although certain genes under selection in different samples belong
to the same pathways or share the same function.

Furthermore, the sweep detection using low coverage pool-seq data may not be
accurate, because of the wrong base calling or analyzing just one chromosome of a diploid
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Figure 4 Bayesian phylogeny based on Aedes albopictus mitochondrial genomes. Alignment length
14,367 bp. The substitution model was set for each gene and intergenic region separately using Parti-
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organism (Pavlidis et al., 2013). For a reliable detection of 30% allele spectrum differences
between two populations both coverage and pool-size of 50 are needed (Kofler et al., 2011).
Most of our samples passed this threshold, but two (2_Sochi and 5_Krasnodar) were
slightly deficient in pool sizes. Of note, for a pairwise Fst analysis, the results obtained
with even lower coverage data did not drastically differ from the classical estimates
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Table 3 Mitochodrial haplotype frequencies for each sample.

Haplotype Frequency (%)
1_Sochi
Sochi_1_H1 73.8
Sochi_1_H2 8.7
Sochi_1_H3 8
Sochi_1_H4 5
Sochi_1_H5 4
2_Sochi
Sochi_2_H1 80
Sochi_2_H?2 11.1
Sochi_2_H3 6.2
3_Sochi
Sochi_3_H1 100
4 Krasnodar
Krasnodar_4_H1 100
5_Krasnodar
Krasnodar_5_H1 73
Krasnodar_5_H2 214
Krasnodar_5_H3 5.6
6_Krasnodar
Krasnodar_6_H1 76.4
Krasnodar_6_H2 12.4
Krasnodar_6_H3 3.8
Krasnodar_6_H4 2.9
Note:

No common haplotypes between samples was found.

(Hivert et al., 2018), so we may assume that the quality of our data was sufficient for
differentiation analysis.

Tiger mosquito dispersal and bottlenecks

In a previous phylogenetic analysis of Ae. albopictus mosquitoes from the Black Sea region,
no significant differentiation between local populations was found using COI and ITS2
data, probably because only samples from subtropical areas near Sochi were studied
(Shaikevich et al., 2018). It should be noted that COI marker lacks the resolution to
discriminate Krasnodar krai Ae. albopictus populations, as only two haplotypes were found
previously (Shaikevich et al., 2018). In agreement with that, no variations were found in the
COI region in the current work.

Genetic differentiation study using PoolSeq revealed that Ae. albopictus populations
from Russia belong to the same cluster and clade (Fig. 4), suggesting that the populations
within the region diverged as a result of in situ differentiation after a single or multiple
introduction(s) from the same geographical region. Similar results were reported
previously for Ae. albopictus invasion regions in Italy, Africa, and South America
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(Kotsakiozi et al., 2017). While clear differentiation between different geographical
populations in Italy and Africa was demonstrated, its level (fixation indices) was about two
times lower than that observed between Sochi and Krasnodar. In contrast, Ae. albopictus
mosquitoes from Greece and Albania showed low level of divergence from each other,
probably due to the lower rates of this mosquito expansion into these countries (Pichler
et al., 2019). However, in another study, a different scenario for Ae. albopictus invasion
in Italy was proposed. According to Manni et al. (2017), Italian Ae. albopictus populations
were a result of multiple introductions and admixtures with the populations from
Reunion and the United States. Somewhat controversial results were obtained in the two
subsequent ddRADseq studies of Italian Ae. albopictus mosquitoes—no recent gene flow
between Italy and Reunion (Sherpa et al., 2018), but admixture between the Northern
Italy and China mosquitoes in Central Italy was demonstrated (Sherpa et al., 2019).

The Ae. albopictus mosquitoes from Russia form a separate clade on the mtDNA
phylogenetic tree. This implies a single or several introductions from the same geographic
location. It is plausible that unrelated mtDNA haplotypes have been independently
introduced to other seaports in the Krasnodar Krai, but it is unlikely that they have spread
to the continental parts of the region, since dominant mtDNA haplotypes detected in
Krasnodar differed non-significantly from the ones detected in Sochi (Fig. 4). This means
that tiger mosquitoes from southern Russia descended from a group of closely related
females.

Rather unexpectedly, we found no mitogenome haplotypes shared between the
studied samples (Table 3). This could possibly be due to a sampling bias, but, taking into
account fixation indices between populations (Table 1), it may rather be an indication
of the highly restricted gene flow between populations. Average Fst in this case were
higher than those observed between the populations from other invasion regions such as
Europe, continental Africa (Kotsakiozi et al., 2017; Pichler et al., 2019), and Brazil
(Multini et al., 2019).

It is noteworthy that certain populations from different cities appeared to be more
closely related to each other than the population within the same city (Table 1, Fig. 2).
It can be accounted for by multiple independent introductions of mosquitoes from the
coast to the inland areas, multiple introductions from other areas, and very intensive
diversification of mosquito populations in Sochi. The latter case may be exemplified by the
3_Sochi and 1_Sochi populations exhibiting high level of divergence. Local geographic
conditions favored diversification, since these mosquito populations were localized to the
rural areas separated by foothills, Sochi center, and other water basins. Additionally,
1_Sochi population was collected closer to the Adler seaport, while 2_Sochi and 3_Sochi
were collected closer to the Sochi seaport. Thus, the differences between these populations
could be a result of separate introductions (although from the same general source,
as the mitochondrial sequences suggest) without subsequent merge of the established
populations. The 4_Krasnodar population exemplifies how populations may become
isolated even within a generally endemic area. It was sampled on a graveyard surrounded
by urban areas. The effective population size analysis suggested that the population
was affected by inbreeding, while fixation indices indicated that it was significantly
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different from other populations. In contrast, in the regions with a dense network of
waterbodies gene flow increases (Medley, Jenkins ¢ Hoffman, 2015). The similarity
between the 5_Krasnodar and 6_Krasnodar populations could be explained by sharing the
same water body, namely a Kuban river bend with multiple piers, which may contain small
artificial reservoirs, and the proximity to the A146 highway leading to Novorossiysk.

At the same time, the 4_Krasnodar population was found at a certain distance from the
river transport system and closer to the M4 highway, thus allowing different introduction
histories for these populations. This hypothesis fits well into the observation that Sochi
mosquitoes are less closely related to each other compared that those from Krasnodar
(Table 1). This may be due to the fact that Sochi populations are separated by foothills and
rivers or the independent introduction of mosquitoes, sharing similar mitochondrial
genomes, but different allele frequencies. Previously, lower genetic differentiation was
shown for Aedes mosquitoes inhabiting large permanent water storages compared to those
inhabiting the temporary ones (Paupy et al., 2004). In the urban areas, different pattern
and density of oviposition sites (Huber et al., 2002) and availability of human-operated
transportation means were a more important differentiation factor than geographical
distance and natural barriers (Medley, Jenkins ¢» Hoffman, 2015).

The Ae. albopictus spread across the Krasnodar Krai likely included multiple parallel
transmissions of mosquitoes between the cities, as judged by the relatively low levels of
differentiation observed between the samples from different cities compared to within-city
differentiation. Very high fixation indices and absence of shared haplotypes between
samples are compatible with severe bottleneck effects and, possibly, difficulties in local
climatic adaptation due to reduced selection effectiveness.

Cold adaptation

There was no uniform pattern of genomic regions that differed in the allele frequency
spectrum between the Sochi and Krasnodar samples detected. Some of the genes in the
selective sweep regions identified in different local populations, however, shared common
functions, such as fatty acid metabolism (GO:0006633) or neural system development
(GO:0007399).

Genes involved in fatty acid metabolism are also often involved in cold adaptation (cold
tolerance) in insects (Kayukawa et al., 2007; Michaud ¢ Denlinger, 2006; Yang et al., 2018).
In 1_Sochi, 4 Krasnodar, and 5_Krasnodar populations, selective sweeps were found
in the genomic regions containing the genes encoding short-chain specific acyl-CoA
dehydrogenase, proteins participating in the elongation of very-long-chain fatty acids, and
fatty acid synthase-like proteins. Previously, these genes were found to be involved in egg
desiccation resistance and lipid conservation during diapause (Reynolds et al., 2012;
Urbanski et al., 2010). As the egg is the only stage in the tiger mosquito development cycle
that can survive sub-zero temperatures (KrefS et al., 2016), it is expected that selection
would act upon genes functioning in diapausing eggs. In addition to the genes involved in
fatty acid metabolism, there were other loci affected by selection that could be involved in
adaptation at the diapause stage. For example, chitin deacetylase and larval/pupal
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cuticle protein H1C may change the cuticle composition at the critical developmental
stages (Chen et al., 2010; Dunning, 2013).

Selection acting on serine/threonine-protein phosphatases rdgC and Pax-6, as well as
other proteins responsible for brain development, is consistent with the previous
findings which linked cold adaptation to the thermotaxis rhodopsin pathway (Parker et al.,
2015; Pavlides, Pavlides & Tammariello, 2011). In Drosophila spp., genes participating
in neuronal development were under positive selection in cold-resistant species (Parker
et al., 2018). Neural protection during diapausing stages may be crucial for further brain
development.

Although field data indicate that Ae. albopictus expansion into the Krasnodar Krai
occurred very recently (Ganushkina et al., 2016; Fedorova et al., 2018, 2019b), the
complexity of local populations exceeded our expectations. While we achieved sufficient
genome coverage, the lack of common haplotypes among populations, relatively high
genetic distances, and potentially multiple introduction routes suggest that the number
of sampling locations needs to be increased. Due to the technical and logistical limitations,
the present study could not cover the whole dispersal history and cold adaptation of
Ae. albopictus in southern Russia. In the coastal area, there were other locations, where
Ae. albopictus mosquitoes were recorded. These locations have different climatic
conditions to adapt to, such as the rainfall amount and wind speed. In the case of the
samples used in the present work, different local landscapes and different distances to the
seaports and other spread routes could result in high divergence between the Sochi
populations and could have significantly affected our ability to identify genes associated
with cold adaptation. In other conditions, 2-3 samples from a geographic area could
be sufficient to analyze pool-seq data (Asgharian et al., 2015; Konorov, 2018), but in this
study, the sampling coverage was obviously not exhaustive, likely due to background drift
effects.

CONCLUSIONS

Population genetics and phylogenetic analysis of Ae. albopictus pooled samples from Sochi
and Krasnodar revealed the possible scenarios of Asian tiger mosquito introduction

and spread across southern Russia. The monophyly of all the mitochondrial genome
haplotypes in the studied samples from Sochi and Krasnodar suggested a single
introduction or, possibly, multiple transmissions from the same location in Europe.

The absence of shared haplotypes between the samples and high fixation indices suggested
that gene flow between samples is heavily restricted. We suggest that different distances
between the spread routes, as well as natural and anthropogenic barriers led to distinct
gene flow patterns, local effective population size reduction and difficulties in local climatic
adaptations due to reduced selection effectiveness, and may account for the failure to
find any uniform adaptation patterns in the present work. Genomic regions with a selective
sweep, which could be the signatures of recent selection events, contain genes involved in
neural protection, lipid conservation, and cuticle formation during diapause. These
processes were found to be important for cold adaptation in previous transcriptomic and
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proteomic studies, but linking them unambiguously to the cold adaptation in the
Krasnodar Krai may require additional studies.
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